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The stereoselective formal synthesis of aspergillide A (1), a cytotoxic 14-membered macrolide, is dis-
closed. The key intermediate, a trisubstituted tetrahydropyran core is prepared by SmI2-induced intramo-
lecular reductive cyclization as well as by using sequential a-aminooxylation, Horner–Wadsworth–
Emmons olefination, and followed by Oxa-Michael cyclization. Other notable transformations in the syn-
thesis include the use of Jacobsen’s hydrolytic kinetic resolution, esterification, ring-closing metathesis
(RCM), and cross-metathesis (CM) reactions.

� 2010 Elsevier Ltd. All rights reserved.
Recently, three novel 14-membered macrolides, named asper- epoxide 8, whereas the aldehyde 7 could be obtained from the
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gillides A, B, and C (Fig. 1, 1–3) were isolated by Kusumi and co-
workers1 from marine-derived fungus Aspergillus ostianus strain
01F313, cultured in a 1/2PD medium containing bromine-modified
artificial sea-water. These compounds were shown to exhibit sig-
nificant cytotoxic activity against mouse lymphocytic leukemia
cells with an IC50 value of 2.1, 70, and 2.0 lg/mL, respectively.
The structures originally proposed for aspergillides A (1) and B
(2) were revised2 by X-ray crystallography studies and the struc-
ture for aspergillide C (3) was confirmed to be correct by perform-
ing its synthesis.3 Both their unique pharmaceutical profile and
challenging chemical architectures have attracted considerable
interest, leading to numerous attempts and several successful syn-
theses of 2 and 3,4 but the synthesis of 1 is rare5 so it has driven us
to take-up the synthesis of aspergillide A (1).

From a retrosynthetic perspective (Scheme 1), we planned that
the side chain installation onto trisubstituted tetrahydropyran core
4 would be the late stage reaction. Thus, the 14-membered
macrolide 1 can be achieved from two fragments, 4 and 5, via
esterification followed by a ring-closing metathesis reaction or
cross-metathesis reaction and Yamaguchi lactonization. The tri-
substituted tetrahydropyran core 4 was prepared by two different
routes using a SmI2-induced intramolecular reductive cyclization
or sequential a-aminooxylation followed by in situ Horner–Wads-
worth–Emmons olefination and Oxa-Michael reaction from 6 and
7, respectively. The 6 in turn could be prepared from the known
ll rights reserved.

: +91 40 27160512.
ha@iict.res.in (G. Sabitha).
epoxide 9.
In route A (Scheme 2), our synthesis commenced from chiral

epoxide 8, prepared from 4-pentene-1-ol following the literature
procedure.6 Opening of epoxide7 8 using trimethylsulfonium io-
dide, n-BuLi in dry THF at �10 �C provided secondary allylic alco-
hol 10 in 75% yield. The plan for the diastereoselective
construction of 13 was based on SmI2 reductive cyclization8,9 of
aldehydes such as 6. To this end, the allylic alcohol 10 was con-
densed with methyl propiolate. This was achieved by slow addition
of methyl propiolate10 to compound 10 via syringe pump over 16 h
to deliver the intermediate 11 in 90% isolated yield. Next, deprotec-
tion of the THP ether 11 by using PTSA in MeOH released the pri-
mary alcohol 12, which was immediately oxidized using IBX in
DMSO/CH2Cl2 to provide aldehyde 6. As anticipated, the SmI2-med-
iated cyclization of 6 proceeded to give 13 with high diasterocon-
revised structures

Figure 1.
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Scheme 2. Reagents and conditions: (a) trimethylsulfonium iodide, n-BuLi, THF, �10 �C, 4 h, 75%; (b) methyl propiolate, DMAP, CH3CN, rt, 16 h, 90%; (c) PTSA, MeOH, 0 �C to
rt, 12 h, 81%; (d) IBX (o-iodoxybenzoic acid), DMSO, CH2Cl2, 0 �C to rt, 1 h, 78%; (e) SmI2 (0.1 M solution) (3 equiv), MeOH (3 equiv), THF, 0 �C, 1 h, 92%; (f) TBSCl, imidazole,
CH2Cl2, 0 �C to rt, 20 h, 88%; (g) LiOH, MeOH/H2O (8:2), 0 �C to rt, 10 h, 78%.
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trol. Thus treatment of 6 with 3 equiv of SmI2
11 in the presence of

3 equiv of dry MeOH in THF effected reductive cyclization to give
2,6-syn-2,3-anti-tetrahydropyran 13 in 92% yield as the single
product. The hydroxy group was protected as TBS ether 14 and
cleavage of the methyl ester furnished acid 4 in excellent yield.

Product 14 was thoroughly characterized with the help of 2-D
nuclear Overhauser effect spectroscopy (NOESY) and double quan-
tum filter correlation spectroscopy (DQF-COSY) experiments. JH2–

H3 = 9.1 Hz, JH5–H6 = 12.2, and JH50–H6 = 1.7 Hz suggest that the H-2
and H-6 are diaxially disposed with respect to each other, which
is further confirmed by exclusive, strong NOE cross-peaks between
H2 and H6. Hence R- and S-stereocenter for C2 and C3, respec-
tively. Further NOE correlation H2/H4 and H4/H6 is consistent with
the chair conformation for six-membered pyran ring. The mini-
mum energy structure is adequately supported by NMR data.
These data (Figs. 2 and 3) suggest that the structure of the newly
formed ring in 1412 is the desired 2,6-syn-2,3-anti tetrahydropyran.

In route B (Scheme 3), the synthesis of the key intermediate 13
started from the epoxy alcohol 9 (98% ee, measured by chiral HPLC)
prepared as reported in our Letter.13 The alcohol was treated with
TPP and I2 in Et2O/CH3CN (3:1) in the presence of imidazole to get
the 2,3-epoxy iodide 15 in good yield, which on refluxing in MeOH
with Zn yielded the allylic alcohol 16. The allylic alcohol was pro-
tected as TBS ether 17 followed by removal of PMB group that pro-
vided the primary alcohol 18, which on oxidation using IBX in
DMSO/CH2Cl2 afforded the aldehyde. The aldehyde without isola-
tion was subjected to the crucial MacMillan14 a-aminooxylation
using nitrosobenzene and 20 mol % D-proline in DMSO followed
by in situ Horner–Wadsworth–Emmons olefination with trimethyl
phosphonoacetate and Cs2CO3 as base to furnish c-anilinoxy-a,b-
unsaturated ester 19a, which was further treated with Cu(OAc)2

in ethanol at room temperature to cleave the O–N bond providing
the ester 19 with high enantiopurity (dr, >95:<5). Exposure of com-
pound 19 to TBAF for 20 h effected a silyl group removal and a
smooth Oxa-Michael cyclization under thermodynamic conditions
in one-pot provided exclusively the 2,6-syn-2,3-anti tetrahydropy-
ran 13 (70%). The hydroxy group was protected as TBS ether 14 and
cleavage of the methyl ester furnished acid 4 in excellent yield. The
analytical and optical rotation values of 13, 14, and 4 exactly
matched with those of 13, 14, and 4 synthesized by Scheme 2.

Now, the stage is set to the synthesis of 1 to fasten the desired
fragments 4 and the known alcohol 515 together to obtain the 14-
membered macrocycle 1 (Scheme 4). Thus, the esterification of
alcohol 5 with carboxylic acid 4 was carried out under Yamaguchi
conditions16 to produce compound 20 in 79% yield. This set the
stage for the macrocyclization by ring-closing metathesis.

Reaction of diene 20 with second or first generation Grubbs’
catalyst17 in refluxing dichloromethane or using Grubbs–Hoveyda
(G–H) catalyst in the presence of 1,4-benzoquinone18 also resulted
in the exclusive formation of Z-isomer 21 in 90% yield. Finally, the
(Z)-isomer 21 was subjected to desilylation under TBAF conditions
to give the macrocyclic core 22 (J = 10.5 Hz) in 85% yield. The struc-
ture of macrolactone 22 was fully characterized by 1H NMR, 13C
NMR, and mass spectral data.

In addition, the cross-metathesis of hydroxy acid 4 with alcohol
5 carried out in the presence of 10 mol% of Grubbs-II catalyst affor-
ded 23 in 15 min as a mixture of E/Z in a ratio of 9:1. The formation
of the product was confirmed by 1H NMR analysis and comparison
with the literature data.5a

It is noteworthy to mention that when our work was under pro-
gress, a note appeared5b on the synthesis of aspergillide A 1 indi-
cating similar results on RCM and cross-metathesis reactions. The
spectral and analytical (1H, 13C NMR, mass, IR, and optical rotation)
data of our synthetic materials 22 and 23 were in complete agree-
ment with those reported.5a,5b As per the literature, the macrolact-
onization of 23 proved to be a difficult task. Only in the case of
TBS-ether and MOM-ether the product was obtained in 30% and
20% yields, respectively, under Yamaguchi conditions.5a,5c The seco
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Figure 2. Expansion of the NOESY spectrum showing the characteristic NOE correlations.
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Figure 3. Chemical structure and energy-minimized structure of 14.
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Scheme 3. Reagents and conditions: (a) TPP, imidazole, iodine, Et2O/CH3CN (3:1), 0 �C, 1 h; (b) Zn, MeOH, reflux, 1 h, (92% overall from 9); (c) TBSCl, imidazole, CH2Cl2, 0 �C to
rt, 4 h, 96%; (d) DDQ, CH2Cl2/H2O (9:1), 0 �C, 1 h, 91%; (e) IBX (o-iodoxybenzoic acid), DMSO, CH2Cl2, 0 �C to rt, 10 h; (f) (i) PhNO, D-proline, DMSO, rt, 15 min, (ii) trimethyl
phosphonoacetate, cesium carbonate, rt, 2 h (60% overall from 18); (g) Cu(OAc)2, EtOH, rt, overnight, 85%; (h) TBAF, THF, 20 h, rt, 70%; (i) TBSCl, Imidazole, CH2Cl2, 0 �C to rt,
20 h, 88%; (j) LiOH, MeOH/H2O (8:2), 0 �C to rt, 10 h, 78%.
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acid bearing benzyl ether as per the report is not stable under any
macrolactonization conditions.5b Since the conversion of 22 and 23
to aspergillide A 1 has already been reported in the literature,5a,5b

the present sequence herein constitutes a formal synthesis of
aspergillide A 1.
In conclusion, a formal synthesis of the 14-membered macro-
lide, aspergillide A (1) has been demonstrated. This synthesis
features a key SmI2 reductive cyclization step and sequential
a-aminooxylation–Horner–Wadsworth–Emmons olefination and
oxa-Michael cyclization reactions to access the trisubstituted pyr-
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an core. Other salient features of the approach include the use of
ring-closing metathesis and cross-metathesis reactions. We believe
that this approach sets the stage not only for the total synthesis of
aspergillide A (1) but also entry to a diversity of analogues through
the installation of various side chains. Studies in this direction are
underway.
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J = 4.5, 15.8 Hz, 1H), 6.07 (dd, J = 2.2, 15.8 Hz, 1H), 5.86–5.72 (m, 1H), 5.21–5.05
(m, 2H), 4.35–4.19 (m, 2H), 3.75 (s, 3H), 2.80 (br s, 1H, OH), 1.75–1.55 (m, 4H),
0.91 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H); 13C NMR (CDCl3, 75 MHz): 167.1, 150.4,
140.5, 119.7, 114.5, 73.5, 71.0, 51.5, 33.8, 31.8, 25.8, 18.2, �4.4, �4.9 ; IR
(Neat): 3446, 2925, 2855, 1726, 1656, 1462, 1258, 1170, 1077, 923, 836,
775 cm�1; LC–MS: 337 [M+Na]+; HRMS: m/z [M+Na]+ calcd for C16H30O4NaSi:
337.1811; found: 337.1799.
(1R,5S,11R,14S)-14-Hydroxy-5-methyl-4,15-dioxabicyclo-[9.3.1]pentadec-9(Z)-
en-3-one (22): ½a�25

D +38.2 (c 0.006 g/mL, CHCl3), lit5b ½a�25
D +42.9 (c 0.077,

CHCl3); 1H NMR (CDCl3, 300 MHz): d 5.64–5.53 (m, 1H), 5.16 (dd, J = 2.2,
10.5 Hz, 1H), 5.06–4.93 (m, 1H), 4.08–4.00 (m, 1H), 3.56–3.47 (m, 1H), 3.35–
3.25 (m, 1H), 2.81 (dd, J = 2.2, 11.3 Hz, 1H), 2.30 (t, J = 11.3 Hz, 1H), 2.32–2.09
(m, 2H), 2.00 (br s, OH) 1.83–1.74 (m, 1H), 1.72–1.40 (m, 7H), 1.25 (d, J = 6.0 Hz,
3H); 13C NMR (CDCl3, 75 MHz): 173.3, 135.7, 128.0, 81.5, 74.8, 70.1, 69.8. 39.0,
34.4, 33.6, 31.9, 28.0, 25.7, 20.9; IR (Neat): 3431, 3020, 2923, 2854, 1725, 1655,
1459, 1371, 1275, 1183, 1133, 1075, 969, 758, 678 cm�1; LC–MS: 277 [M+Na]+;
HRMS: m/z [M+Na]+ calcd for C14H22O4Na: 277.1415; found: 277.1427.
2-(2R,3S,6R)-3-hydroxy-6-[(E,6S)-6-hydroxy-1-heptenyl]tetrahydro-2H-2-pyranyl
acetic acid (23): ½a�25

D +48.4 (c 0.005 g/mL, CHCl3), 1H NMR (CDCl3, 500 MHz): d
5.67–5.52 (m, 1H), 5.39 (dd, J = 5.2, 15.6 Hz, 1H), 3.85–3.71 (m, 2H), 3.60–3.53
(m, 1H), 3.36–3.28 (m, 1H), 2.77 (dd, J = 3.1, 14.5 Hz, 1H), 2.39–2.33 (m, 1H),
2.15–1.95 (m, 4H), 1.75–1.60 (m, 1H), 1.57–1.34 (m, 5H), 1.16 (d, J = 6.2 Hz,
3H), 0.88 (s, 9H), 0.06 (s, 6H); LC–MS: 409 [M+Na]+; HRMS: m/z [M+Na]+ calcd
for C20H38O5NaSi: 409.5902; found: 409.5893.
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